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Abstract. We have built and operated an atom interferometer of the Mach-Zehnder type. The atomic wave
is a supersonic beam of lithium seeded in argon and the mirrors and beam-splitters for the atomic wave
are based on elastic Bragg diffraction on laser standing waves at λ = 671 nm. We give here a detailed
description of our experimental set-up and of the procedures used to align its components. We then present
experimental signals, exhibiting atomic interference effects with a very high visibility, up to 84.5± 1%. We
describe a series of experiments testing the sensitivity of the fringe visibility to the main alignment defects
and to the magnetic field gradient.

PACS. 39.20.+q Atom interferometry techniques – 03.75.Dg Atom and neutron interferometry – 32.80.Lg
Mechanical effects of light on atoms, molecules, and ions

1 Introduction and brief historical overview

We have built a Mach-Zehnder atom interferometer, which
gave its first signals in 2001 [1]. In this interferometer, the
atomic wave is a supersonic beam of lithium seeded in ar-
gon, with a lithium de Broglie wavelength λdB = 54 pm.
Coherent atom manipulation is based on Bragg diffraction
on quasi-resonant laser standing waves at a wavelength
λL ≈ 671 nm. We use elastic laser diffraction, which can
be made with ordinary single frequency lasers, because
this process has little sensitivity to the phase noise of
the laser beams. However, the associated difficulty is that
the output atomic beams differ only by their directions of
propagation and not by their internal states. Therefore,
such an interferometer must be operated with a highly
collimated atomic beam resulting in a strongly reduced
output atomic flux. Fortunately, the transmission of such
a Bragg Mach-Zehnder interferometer is quite high and,
thanks to an intense lithium beam and a very sensitive
hot-wire atom detector, we obtain reasonably large sig-
nals. Moreover, we have been able to observe interference
signals while using the diffraction orders p = 1, 2 and 3
and in the case of the first order, the signal exhibits an
excellent fringe visibility V = 84.5 ± 1%.

We may recall the development of atom interferometry
since 1991, when several atom interferometers gave their
first signals:

– a Young’s double slit experiment by Carnal and
Mlynek, with a supersonic beam of metastable he-
lium [2];
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– a Mach-Zehnder interferometer by Pritchard and
co-workers using a thermal atomic beam of sodium and
diffraction on material gratings [3];

– a Ramsey-Bordé interferometer by Helmcke and
co-workers, with a thermal atomic beam of calcium,
was used to demonstrate Sagnac effect with atomic
waves [4];

– an atom interferometer using Raman diffraction by
Kasevich and Chu, with cold sodium atoms, was used
to make the first high sensitivity measurement of the
local acceleration of gravity by atom interferometry [5].

This research field has been rapidly expanding since 1991
and an excellent overview of this field and of its appli-
cations can be found in the book “Atom interferome-
try” [6] published in 1997. Many types of atom interfer-
ometers have been developed and we limit the present
review to the apparatuses in which the atomic paths are
noticeably different, i.e. we will not discuss the interfer-
ometers, such as atomic clocks, in which the momentum
transfer is very small. Moreover, we limit our review to in-
terferometers operating with thermal atoms or molecules,
quoting only the first publication for each interferome-
ter. In addition to the interferometers built in 1991, we
find: a magnesium atom interferometer by Ertmer and
co-workers [7]; a calcium atom interferometer by Morinaga
and co-workers [8]; an I2 molecular interferometer by
Bordé and co-workers [9]; a Na2 molecular interferometer
by Pritchard and co-workers [10]; a metastable argon in-
terferometer of Zeilinger and co-workers [11]; a metastable
neon interferometer by Siu Au Lee and co-workers [12];
a cesium atom interferometer gyroscope by Kasevich
and co-workers [13]; a K2 molecular interferometer by
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Fig. 1. Schematic drawing of our Mach-Zehnder interferom-
eter (top view). The x-, y-, z-axis are represented and we
give the distance z of each element to the nozzle. O: lithium
oven; Sk: skimmer at zs = 20 mm; S0: first collimating slit at
zS0 = 485 mm; S1: second collimating slit at zS1 = 1265 mm;
Mi, i = 1−3: mirrors for the laser standing waves at zM1 =
1415 mm, zM2 = 2020 mm and zM3 = 2625 mm; B1 and B2:
complementary exit beams; SD: detector slit with a tunable
width at zSD = 3025 mm; D: 760 µm wide rhenium hot wire of
the Langmuir-Taylor detector at zD = 3375 mm. We have also
represented the main stray atomic beams produced by diffrac-
tion on the three gratings, assuming that only two diffraction
orders, 0 and p are produced, as in the ideal Bragg regime.

Tiemann and co-workers [14], a helium atom and dimer
interferometer by Toennies and co-workers [15], a large
molecule interferometer by Zeilinger and co-workers [16];
a metastable hydrogen interferometer by Hänsch and
co-workers [17].

In this paper, we recall the principles of Mach-Zehnder
atom interferometers and of laser diffraction. Then, we
explain our basic choices and we describe our set-up and
its alignment procedures. We present a diffraction experi-
ment, used to choose the parameters of the laser standing
waves, and a set of interference signals recorded using the
diffraction orders p = 1, 2, 3. We explain how we have op-
timized the fringe visibility by a systematic study of its
variations with the main defects of the interferometer.

2 Mach-Zehnder atom interferometers:
general properties and our design

2.1 General properties

A Mach-Zehnder grating interferometer is derived from
the optical Mach-Zehnder interferometer by replacing the
beam-splitters and mirrors by diffraction gratings. This
interferometer was developed with X-rays [18] in 1965,
with neutrons [19] in 1974 and with atoms [3,5] in 1991.
Figure 1 presents a schematic drawing of the atom paths
in such an interferometer. In the simplest approxima-
tion, the incident atomic wave is treated as a plane wave
Ψ(r) = exp [ik · r] and diffraction of order p by grating Gj

produces also a plane wave:

Ψd(r) = αj(p) exp [ik · r + ipkGj · (r− rj)] . (1)

Conservation of energy and momentum must be fulfilled
and equation (1) is exact only in the case of Bragg diffrac-
tion but, near this geometry, it is valid up to the first order
in power of kGj/k. αj(p) is the diffraction amplitude of or-
der p by grating Gj . The wave vector kGj of grating Gj

lies in the grating plane, perpendicular to its lines, with a
modulus kGj = 2π/a (a is the grating period, assumed to
be the same for the three gratings). rj measures the po-
sition of a reference point linked to grating Gj . As shown
by equation (1), the phase of the diffracted beam depends
rapidly on the position of the grating in its plane. The
output beam labeled B1 in Figure 1 results from the in-
terference of two waves Ψu (following the upper path with
the diffraction orders p, −p and 0) and Ψl (following the
lower path with the diffraction orders 0, p and −p):

Ψu/l(r) = au/l exp
[
i
(
k · r + ϕu/l

)]
(2)

with au = α1(p)α2(−p)α3(0) and al = α1(0)α2(p)α3(−p)
while ϕu = p [kG1 · (r − r1) − kG2 · (r − r2)] and ϕl =
p [kG2 · (r − r2) − kG3 · (r − r3)]. These two waves inter-
fere on the detector and the resulting total intensity is
given by integrating over the detector surface:

I1 =
∫

d2r |Ψu + Ψl|2

=
∫

d2r
[
a2

u + a2
l + 2aual cos (ϕu − ϕl)

]
. (3)

To simplify the algebra, we have assumed that the ampli-
tudes au and al are real. The phase (ϕu − ϕl) is given by
ϕu − ϕl = p [∆kG · r + ∆ϕG] where ∆kG is given by:

∆kG = kG1 + kG3 − 2kG2 (4)

and the phase ∆ϕG is a function of the grating positions
only:

∆ϕG = [2kG2 · r2 − kG1 · r1 − kG3 · r3]
≈ kG (2x2 − x1 − x3) . (5)

Fringes appear over the detector area if the condition
∆kG = 0 is not fulfilled. In the experiments, this con-
dition is verified by tuning the orientation of one grating
in its plane and any small deviation induces a large vis-
ibility loss, as shown below (see Fig. 5). The x-positions
of the three mirrors change the phase ∆ϕG of the atom
interference fringes. This property provides a very conve-
nient method to sweep the interference fringes: this phase
is non-dispersive, i.e. independent of the velocity of the
atomic wave, so that there is no associated visibility loss.
If we assume that ∆kG = 0, then |Ψu + Ψl| is independent
of r and the intensity I1 of the exit beam B1 is propor-
tional to:

I1 = a2
u + a2

l + 2aual cos(ϕu − ϕl)
= I1,m [1 + V cos(ϕu − ϕl)] (6)
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Fig. 2. Fringe visibility V for a two-beam interference as a
function of the intensity ratio ρ. A logarithmic scale has been
used for ρ so as to exhibit the symmetry when ρ is replaced
by 1/ρ.

where V is the fringe visibility given by:

V =
2aual

a2
u + a2

l

=
2
√

ρ

1 + ρ
(7)

where ρ is the ratio of the intensities carried by the two in-
terfering beams, ρ = a2

u/a2
l . The visibility V , which is a

symmetric function of au and al, has the same value if ρ
is replaced by its inverse. A small amplitude mismatch
reduces the visibility but only very slightly, as shown in
Figure 2.

2.2 Our main choices

Our goal was to build an atom interferometer in which
the two atomic paths are sufficiently separated, so that
one can apply a perturbation to only one path: such an
arrangement is necessary to perform interferometric mea-
surements of a perturbation. Previous experiments of this
type include the measurement of the electric polarizability
of sodium [20,21] and the measurement of the index of re-
fraction of gases for sodium atomic waves [22,23], both ex-
periments being done by Pritchard and co-workers. More
recently, Toennies and coworkers have compared the elec-
tric polarizability of helium and helium dimer [24]. More-
over, we wanted to observe the dependence of the index of
refraction with the velocity of the atomic wave and this de-
pendence is detectable only if this velocity is comparable
to or larger than the thermal velocity of the target gas. We
have therefore chosen to use for the atomic wave a thermal
beam rather than a slow beam: this second choice would
have imposed to use also a cold atomic target, making the
experiment very complex.

We had to choose the diffraction process, among sev-
eral possibilities: diffraction by material gratings (which
was first studied by Pritchard and co-workers [25] and

briefly reviewed in Ref. [26]), elastic diffraction by a laser
standing wave (first observed by Arimondo et al. [27], with
well resolved diffraction peaks first recorded by Pritchard
and co-workers [28]) or inelastic diffraction processes,
which can be either a one-photon diffraction process (used
in Ramsey-Bordé interferometers) [4], or a two-photon
Raman diffraction process used in many cold or ther-
mal atom interferometers (its first use being described in
Ref. [5]). We have chosen to use elastic Bragg diffraction
by laser standing waves, the main advantages being the
high transmission of the interferometer associated with a
high fringe visibility and the fact that we can use an ordi-
nary single frequency laser. The first interferometers using
this diffraction process and thermal atoms were built by
Siu Au Lee and co-workers with metastable neon [12] and
also by Zeilinger and coworkers using metastable argon
(but not in the Bragg regime) [11]. Elastic diffraction is
similar to diffraction by a material grating, in the sense
that the internal atomic state is not modified. The grat-
ing period is equal to half the laser wavelength, which
must be chosen very close to a resonance transition of
the atom, so that diffraction can be observed with modest
laser power densities. With sufficient laser power densities,
diffraction orders higher than the first one can be easily
observed [29–31].

The choice of laser diffraction limits the choice of the
atom among those which have an intense resonance tran-
sition accessible to cw single frequency lasers. If one ex-
cepts the use of metastable states (with rare gases or hy-
drogen), this requirement favors considerably the alkali
atoms. Then, the most important quantity is the Bragg
angle θB = λdB/λL, which must be as large as possible in
order to maximize the separation between the two atomic
paths in the interferometer. Because the atomic de Broglie
wavelength scales like m−1, a light atom is favored and we
have chosen the lithium atom. Its first resonance transi-
tion is at a 671 nm wavelength, corresponding to a grating
period a = 335 nm. By seeding lithium in a supersonic
beam of argon, the mean velocity u of the lithium atoms
is close to 1060 m/s corresponding to a de Broglie wave-
length λdB = 54 pm and a Bragg angle θB = 80 µrad.

2.3 Elastic diffraction of atoms by a laser standing
wave

As pointed out by Siu Au Lee and coworkers [12], diffrac-
tion in the Bragg regime is ideal to build an interferom-
eter: only two diffraction orders (0 and p) are produced
for a well chosen incidence angle and, by varying the laser
power density and/or the interaction time, the diffraction
efficiency can be tuned to produce 50−50% beam-splitters
and 100% mirrors. Therefore, the transmission of an ideal
Mach-Zehnder interferometer using this diffraction pro-
cess should be equal to 100% and, as a result of the sym-
metry of this interferometer, the fringe visibility, measured
on the B1 output beam, should also be equal to 100%.

We first recall that elastic diffraction by a laser stand-
ing wave results from the absorption of a photon going
in one direction followed by the stimulated emission of a
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photon going in the other direction: this scheme corre-
sponds to first order diffraction and p steps are needed for
the diffraction order p. After an absorption-emission cy-
cle, the atom is back in its initial level, and it has received
a momentum kick equal to two photon momenta.

The laser frequency ωL and the resonance atomic fre-
quency ω0 differ by the detuning δ = ωL−ω0, which must
be considerably larger than the natural width γ of the
resonance transition. Then, the main effect of the laser
standing wave is to create a weak periodic potential pro-
portional to the local density of energy in the laser beam,
V = V0(z) cos2(kLx) (where the x-axis is parallel to the
laser beam wave vector). The periodic nature of the po-
tential can be treated by introducing Bloch states as done
in our previous paper [32], which quotes many previous
works on laser diffraction.

To simplify the discussion, we assume that V (z) ex-
tends over a distance w (we do not define precisely w
which should not confused with the Gaussian beam ra-
dius w0 discussed below), so that an atom with a veloc-
ity v interacts with the laser beam during an interaction
time tint = w/v. The natural energy unit of the problem
is the atomic recoil energy �ωrec = (�kL)2 /(2m). Follow-
ing [32,33], this quantity can be used to define a dimen-
sionless potential q = V0/(4�ωrec) and a dimensionless
interaction time τ = ωrectint.

The incident atom is characterized by its momentum
state in the x-direction, |kx〉. When q is large (q � 1),
the periodic potential couples the incident atomic wave
|kx〉 to many other states |kx + 2nkL〉, where n is an in-
teger. The Bragg regime occurs when kx ≈ ±pkL and if
the potential q is not too strong and does not vary too
rapidly with z. Then, one can neglect the coupling of the
two states |kx = ±pkL〉 with other states and treat the
dynamics as a two-level problem. At the lowest nonvan-
ishing order, the coupling between these two levels is pro-
portional to qp and the probability of diffraction of order p
is then given by a Rabi oscillation:

Pp = sin2 (qpτ/dp) (8)

where the coefficient dp is equal to 1 for order p = 1, to 4
for order p = 2 and to 64 for order p = 3. The intensity
which is not diffracted remains in the zeroth-order beam.
Because of the dependence in qp of the sine argument in
equation (8), the q values for a 50−50% beam-splitter and
a 100% reflective mirror are linked by qBS = qM × 2−1/p.
Finally, this diffraction process induces some phase-shifts
of the waves which will not discussed here but which may
be very important [34].

If δ is too small, real excitation of the atom followed
by a spontaneous emission of a photon occurs during the
time spent by the atom in the laser field. When this occurs,
the coherence of the atomic propagation is destroyed very
efficiently. The probability PSE of a spontaneous emission
event is given by:

PSE = qτ
γ

δ
. (9)

As q ∝ δ−1 and PSE ∝ δ−2, laser diffraction can be
made almost perfectly coherent by choosing a sufficiently

large detuning. For a given value of q, the use of a larger
detuning requires also a larger laser power density, so
that the available laser power gives a practical limit to
the detuning.

3 Experimental set-up

Our experimental set-up is inspired by the sodium in-
terferometer of Pritchard and co-workers [35] and by
the metastable neon interferometer of Siu Au Lee and
co-workers [12]. We are going to describe its main parts
and to explain our procedures to align its components.

3.1 Vacuum system

The vacuum system is made of five differentially pumped
chambers, (see Fig. 1):

– the first chamber contains the supersonic beam source
and is pumped by a 8000 l/s unbaffled oil diffusion
pump (Varian VHS400). The gas load due to the beam
is a few mbar l/s and, under normal beam operation,
the residual pressure is about 8×10−4 mbar. The beam
exits this chamber through a 0.97 mm diameter skim-
mer provided by Beam Dynamics;

– the second chamber, which serves to differential pump-
ing, to collimation and to optical pumping of the
lithium beam, is pumped by a 2400 l/s oil diffusion
pump (Varian VHS6) with a water cooled baffle. Un-
der normal beam operation, the pressure is about
3 × 10−6 mbar. The beam exits this chamber through
the source slit S0;

– the third chamber, which serves to collimation only, is
pumped by a 700 l/s oil diffusion pump from Edwards
with an internal baffle. The residual pressure is be-
low 5 × 10−7 mbar, practically independent of beam
operation. The beam exits this chamber through the
collimation slit S1;

– the fourth chamber, which contains the interferometer,
is pumped by two 1200 l/s oil diffusion pumps (Var-
ian VHS1200) with water cooled baffles. The residual
pressure is below 5× 10−7 mbar. The detector slit SD

is also located in this chamber. The beam exits this
chamber through a 3 mm diameter hole, located just
before an UHV gate valve;

– the fifth chamber holds the surface ionization hot-wire
detector. As the stray signal of such a detector is very
sensitive to the residual gas, this chamber is built with
UHV components and is pumped by a 300 l/s turbo
molecular pump. The residual pressure in this chamber
is a few 10−9 mbar, when the UHV gate valve is closed
and about 10−8 mbar when it is opened.

All the water baffles are cooled by circulating a liquid
near 3 ◦C. We use three double stage roughing pumps:
two 65 m3/h pumps, one for the beam source, one for the
other four oil diffusion pumps and a 15 m3/h pump for the
turbo pump of the detector. To reduce vibrations induced
in the set-up, these pumps are located in the next room.
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3.2 The atom wave source and detector

Our lithium atomic beam, inspired by the design of
Broyer, Dugourd and co-workers [36] is briefly described
in [1,37,38] and more details will appear in another paper.
Lithium is seeded in argon and our normal operating con-
ditions are a source pressure of 330 mbar, a temperature
equal to 973 K for the back part of the oven (fixing the
lithium vapor pressure near 0.55 millibar), a temperature
equal to 1073 K for its front part and a nozzle diame-
ter equal to 200 µm. We have measured the beam mean
velocity, u = 1060 m/s and the terminal parallel temper-
ature of lithium T‖ ≈ 6.6 K. This parallel temperature
is roughly 1/3 of the calculated parallel temperature of
the argon carrier gas, an effect which occurs when a light
species is seeded in a heavier carrier gas [37,38].

To detect the output beams, we use a hot-wire detector
which has been fully described in a previous study [39]. Its
detection efficiency, which varies with the oxidation and
the temperature of the rhenium wire, was measured to be
close to 30%. With our normal operating conditions, the
collimated beam gives a signal up to 8×104 counts/second,
on a background signal close to 2 × 103 counts/second.
This background signal presents a non-Poissonian statis-
tics with a few bursts.

In Figure 1, it is clear that the location of the de-
tector must be well chosen. We must put the detector
far enough from the third laser standing wave, at a place
where the two exit beams B1 and B2 are well separated:
these beams carry complementary signals and the fringe
visibility would be very small if the detector was put close
to the third grating, where these two beams are strongly
overlapping. The complementary character of the two sig-
nals is a consequence of the fact that laser diffraction
is acting on the phase and not on the amplitude of the
atomic wave (for more details, see Fig. 7 of Ref. [40]).
However, we must not forget the existence of the stray
beams represented in Figure 1. These beams carry some
flux, because the diffraction amplitudes are not at their
optimum values, and these stray beams cross the main
exit beams B1 and B2 at a distance equal to the inter-
grating distance L12 = L23 = 0.605 m. Therefore, we have
chosen to put the detector slit (which defines if an atom is
detected or not) at a distance L34 = 0.40 m from the third
laser standing wave, 0.2 m in front of the place where these
stray beams are expected to create the largest signals. The
hot wire itself is 0.35 m away in the fifth UHV vacuum
chamber. In a first arrangement, the detection slit, which
was placed very near the hot wire detector, was put out of
order by excessive heating due to the hot wire radiation.

3.3 Laser standing waves

We use an home-made single frequency cw dye laser, fol-
lowing Biraben’s design [41], pumped by a Spectra-Physics
argon ion laser at 515 nm. The dye is LD 688 from Ex-
citon dissolved in EPH. Using the Hänsch-Couillaud [42]
frequency stabilization, we get a laser linewidth of the or-
der of 1 MHz. The laser beam goes through a 60 dB optical

isolator. After the isolator, the power available at 671 nm
is close to 400 mW, for 5 W of Ar+ pump power.

The laser frequency, which is measured by a home-
made lambdameter, must be detuned from resonance,
which has a complex structure due to the fine, hyperfine
and isotopic splittings [43]. Most of our experiments are
optimized for the 7Li isotope (natural abundance 92.5%)
and we define the frequency detuning by:

δ/(2π) = νL − (
E(2P3/2) − E(2S1/2, F = 1)

)
/h (10)

where the energies are those of the 7Li isotope levels. The
hyperfine structure of the 2P3/2 state is very small and
can be neglected. Our usual choice of detuning is δ/(2π) =
+3.0 GHz and whenever a different value is used, it will
be indicated. The natural width of the 2S1/2−2P3/2 tran-
sition of lithium is γ/2π = 5.9 MHz [44].

The laser beam is magnified by a telescope made of
two AR coated singlet lenses so that we can change the
magnifying ratio by changing one lens. We characterize
the beam transverse profile by scanning a photodiode
through it, thanks to a motorized translation stage, and
the recorded intensity as a function of the photodiode po-
sition is fitted to a Gaussian profile, thus extracting the
Gaussian beam radius w0. When operating with low power
densities (practically only when using first order diffrac-
tion), the Gaussian beam is limited by an iris and the
resulting beam profile is closer to a flat top profile.

The beam is then split by two beam splitters with a
nominal transmission equal to 50% for an incidence of 45◦.
We thus get three beams, one with a power close to P/2
and two beams, each with a power close to P/4. The
P/2 beam serves for the central laser standing wave, on
mirror M2, while the two P/4 beams serve for the other
laser standing waves, on mirror M1 and M3. Using in-
cidence angles different from 45◦, we are able to modify
the power repartition between these three beams: this is
needed when using first order diffraction because the real
transmission differs from 50% and also when using higher
diffraction orders p = 2 and 3, because the needed power
repartition is not the same. In order to choose the best
laser power repartition, we have recently installed atten-
uators made of an half-wave plate followed by a polarizer
on two of these three laser beams. This system was not
available during most of the experiments described here.

The three laser beams are sent near normal incidence
on the mirrors Mj . The properties of a standing wave are
weakly sensitive to the exact value of the incidence angle
on the mirror and very sensitive to the orientation of the
direction perpendicular to the mirror surface. More pre-
cisely, if a plane wave is incident on a mirror with a small
angle of incidence i, the reflected wave and the incident
wave produce a wave which is progressive in a direction
parallel to the mirror surface, with a wave vector kL sin i
and which is a standing wave in the direction normal to the
mirror with a wave vector kL cos i. The progressive char-
acter of the wave parallel to the mirror surface induces a
Doppler shift of its frequency equal to kLu sin i which cor-
rects the detuning: in our experiment, this Doppler shift
of the order of 1.5 MHz per mrad is perfectly negligible.
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The fact that the laser wave vector normal to the mirror
surface is kL cos i slightly modifies the momentum kick
received by the atoms which becomes 2pkL cos i but, for
small i values, this modification is negligibly small.

Following equation (6), the phase of the interference
fringes depends on the x-positions of the three mirrors
and this property makes the interferometer very sensi-
tive to vibrations. In the interferometers developed by
Pritchard [35] and by Siu Au Lee [12], these vibrations
were controlled by servo-loops. We have chosen to min-
imize these vibrations by building a very rigid rail to
support the three mirrors Mj . This rail and the role
of vibrations will be discussed in an other paper. As
in references [12,35], we use an optical three-grating
Mach-Zehnder interferometer to control the vibrations of
the x-positions of the three mirrors Mj and the measured
noise on the quantity (2x2 − x1 − x3) is negligibly small,
with a rms amplitude of the order of a few nanometers.
The output signal of this interferometer is also used to cal-
ibrate the displacement of the motion of the mirror M3,
which serves to observe interference fringes.

3.4 Alignment procedures

We must align the atomic beam and the mirrors producing
the laser standing waves. The numerous adjustments must
be done with great care: to give an idea, most angles must
finally be tuned within about 10 µrad from their optimum
value.

The atomic beam alignment is difficult as the beam
must go with minimum attenuation from the nozzle to
the hot-wire of the detector 3.4 m away, through the skim-
mer, the source slit S0, the collimation slit S1, the detector
slit SD, the 3 mm diameter hole located before the detec-
tor chamber. For each element, we explain the available
adjustments and how we proceed to make them:
– the oven can be adjusted in the three directions under

operation;
– the skimmer and the 3 mm diameter hole are fixed

to the center of their supporting flanges, while all the
other elements can be adjusted in the x-direction, but
not in the y-direction. This is possible because the
three slits have a sufficient height, about 10 mm;

– the width of the slit S0 is fixed and equal to 20 µm,
while the widths of the collimation slit S1 and of the
detector slit SD are controlled by piezo-drives from
Piezosystem Jena in the 0−200 µm range: the slit
widths commonly used are e1 = 12 µm for S1 and
eD = 50 µm for SD (if different values are used, they
will be specified). The slit material has been chosen
to be non magnetic, because the inhomogeneous field
which would exist in the slit opening could induce a
spreading of the atomic beam, by Stern and Gerlach
effect;

– the slits S0, S1 and SD are made vertical before op-
eration. We have used either the diffraction pattern
of a laser beam or the observation of the slit with a
telescope, in comparison with a plumb line. We esti-
mate that the slits are vertical within a few mrad: if

the useful height of the slit Si is hi, a small error ε on
its verticality induces no broadening of the full width
at half maximum of the beam but a broadening of its
wings of the order of εhi. We can evaluate these useful
heights simply by assuming straight lines trajectories
for the atoms, from the skimmer to the 3 mm hole near
the detector. The calculated useful height is 1.3 mm
range for S0, 1.8 mm for S1 and 2.9 mm for SD. The
corresponding broadening of the beam wings, of the
order of 1−3 µm per mrad, is probably fully negligible
for S0 and SD which are rather wide, and less negligi-
ble for S1 which has usually the smallest width;

– the x-position of these three slits and of the hot-wire
can be modified under vacuum: in each case, we use
a translation stage operated by a linear drive vacuum
feedthrough, with a sensitivity of the order of 10 µm. In
addition, the x-position of the detector slit SD can be
swept under computer control by a piezo-translation
from Piezosystem Jena over 400 µm.

For the laser standing waves, each mirror Mj is attached
to a double stage kinematic mount built in our laboratory.
The first stage, with screws, can be operated only when
the experiment is at atmospheric pressure while the sec-
ond stage actuated by low-voltage piezo-translators, has a
tuning range close to 600 µrad. A first alignment, within
±100 µrad, must be made with the experiment at atmo-
spheric pressure and the final tuning is made with the
second stage. To make the first alignment, we use the fol-
lowing signals:

– we first adjust the rotation θz around the horizontal
axis z with an autocollimator. For each mirror Mj ,
we set the autocollimator by observing the horizontal
surface of diffusion pump oil through a pentaprism and
we set the mirror perpendicular to the autocollimator
axis;

– we then adjust the rotation θy around the vertical
axis y, with a laser beam which replaces the atomic
beam, going from the skimmer to the 3 mm hole near
the detector. Then, using a pentaprism, we send this
beam successively on each mirror Mj and we set the
mirror so as to maximize the reflected laser power mea-
sured behind the skimmer.

With the experiment under vacuum, we make the final
adjustment of θy for each mirror Mj: we tilt the mirror to
observe Bragg diffraction of the chosen order p (see Fig. 3)
with the corresponding laser standing wave. We have no
signal which can be used to finely tune the θz angles sep-
arately, but we must tune one of these three angles to
cancel ∆kG defined by equation (4) and the fringe visi-
bility is very sensitive to an exact cancellation, as shown
below in Figure 5. We use mirror M2 as its effect is twice
as large as the effect of M1 or M3.

Finally, an optical grating is linked to each mirror Mj

to form the optical three-grating Mach-Zehnder interfer-
ometer briefly discussed above. It is necessary to align
this interferometer before the final adjustments of the mir-
rors Mj.
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Table 1. This table collects information concerning our best signals obtained with the diffraction order p. We give the date of
the experiment, the mean intensity I0, the visibility V and several experimental parameters: the Gaussian beam radius w0, the
laser detuning δ/(2π), the total laser power P used in the laser standing waves, the collimation slit width e1 and the detection
slit width eD. We have also calculated the figure of merit I0V2, related to the phase sensitivity if Poissonian statistics is assumed;
(a) when using p = 1, the intensity profile has a flat top and w0 is the radius of the laser beam, (b) experiment done with a
cancellation of the effect of the magnetic field gradient, (c) not measured during the experiment.

p Date I0 (c/s) V % I0V2 w0 (mm) δ/(2π) (GHz) P (mW) e1(µm) eD(µm)

1 March 2004 12900 80.5 ± 1 8360 5.0 (a) 2.8 150 12 40

July 2004 (b) 23710 84.5 ± 1 16930 5.0 (a) 2.8 150 12 40

2 April 2004 14430 49.0 ± 1 3465 2.9 1.5 300 12 50

Sept. 2004 20180 51.0 ± 1 5250 1.8 3.1 460 14 50

Sept. 2004 (b) 8150 54.0 ± 1 2735 1.8 3.1 (c) 14 60

3 April 2004 4870 26.0 ± 1 304 2.9 1.1 300 12 40

Fig. 3. Intensity of the direct beam measured as a function
of the angle θy of mirror M2. When the Bragg condition is
fulfilled for a diffraction order p, the transmitted intensity goes
through a minimum labelled by the order p. This experiment
was made with an almost Gaussian laser beam with a measured
waist radius w0 = 3.1 mm, a power P = 240 milliwatts and
a detuning δ/(2π) = 1.2 GHz. The collimation slit width was
e1 = 10 µm and the detection slit was eD = 70 µm.

4 Atom interference effects

4.1 Diffraction experiments

With only one laser standing wave, we can observe diffrac-
tion. Two main types of diffraction experiments have been
done:

– by setting the orientation of the mirror in order to be
in the Bragg geometry, we produce a diffracted beam.
Then, by scanning the position of the detector slit,
we can record the profile of the direct and diffracted
beam. A typical result was shown in our previous pa-
per [1]. We have verified that the diffraction behaves as
expected in the Bragg regime, with, in particular, the

absence of a beam of order p = −1 when the geometry
favors the diffraction of order p = 1;

– by rotating the mirror around the y-axis, we succes-
sively fulfill the Bragg condition for the various diffrac-
tion orders p. We have recorded the direct beam inten-
sity as a function of the angle θy and diffraction then
appears as an intensity loss. Figure 3 presents such a
recording. We observe intensity losses corresponding
to Bragg condition for the orders p = −2 up to p = 4.
The interest of such a recording is that it gives imme-
diately an idea of the diffraction efficiency. We never
reach a 100% diffraction probability, because of the
presence of 6Li and of the finite widths of the velocity
and angular distributions of the incident atomic beam.

With our usual detuning δ/(2π) = 3.0 GHz and with the
typical power density used for first order diffraction, the
diffraction probability for the 6Li atoms is very small and
we may forget their presence. We have also made some
experiments with a detuning chosen to diffract selectively
these atoms.

4.2 High visibility atom interference fringes

We have operated our interferometer using successively
three different diffraction orders p = 1, 2 and 3. By sweep-
ing the x-position of mirror M3, we have observed interfer-
ence signals with a very high visibility which are plotted
in Figure 4. In all cases, the signal is expressed as a num-
ber of atoms detected per second with an usual counting
time equal to 0.1 s. The observed signal can be written as:

I1 = IB + I0 [1 + V cosφ] . (11)

The background signal IB of the detector is recorded just
after or before recording the signals, by flagging the atomic
beam in the second chamber and we deduce from this mea-
surement the mean IB value. Then, we can make a fit of
the signal to estimate the mean intensity I0 and the visibil-
ity V . The phase φ is a locally linear function of time, but
the fit must take into account the nonlinearity of the piezo
drive. Table 1 gives for the three orders p = 1, 2 and 3
the parameters used (laser detuning, beam waist w0 and
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Fig. 4. Interference signals recorded with the diffraction orders
p = 1 (part a, 84.5% visibility, collimation slit width e1 =
12 µm, detection slit width eD = 40 µm), p = 2 (part b, 51%
visibility, e1 = 14 µm, eD = 50 µm) and p = 3 (part c, 26%
visibility, e1 = 12 µm, eD = 40 µm). In these three cases, the
B1 output signal is measured as a function of the x-position
of mirror M3, calibrated thanks to the optical interferometer
linked to the three mirrors. The counting time is equal to 0.1 s
and one can see that the displacement ∆x necessary to sweep
one fringe is equal to λL/(2p). The background signal recorded
just after the recording of the signal is also plotted.

beam powers) and the mean intensity I0 and the visibil-
ity V deduced from the fits.

We have measured the interferometer transmission by
making the ratio of the intensity at the peak of construc-
tive interference and of the intensity of the direct atomic
beam, in the absence of the three laser standing waves.
With first order diffraction, the measured transmission
can reach quite large values, up to 85%. Theory predicts
a 100% value and the difference is due mainly to imperfec-
tions of the diffraction process and to the presence of 6Li
in the beam with its natural abundance equal to 7.5%.

The dependence of the fringe visibility with the
diffraction order has been studied only once before, by
Siu Au Lee and coworkers [12]: in this experiment like in
the present case, the visibility decreased rapidly with in-
creasing order: V = 62% for p = 1, V = 22% for p = 2 and
V = 7% for p = 3. The most natural explanation of this
rapid decrease is the existence of a phase noise with an
amplitude proportional to the diffraction order p: this is
the case if the phase noise comes from the grating vibra-
tions. However, two other effects may also contribute to
the rapid decrease of the fringe visibility when the order p
increases:

– the incoherent processes involving a real photon ab-
sorption followed by spontaneous emission are not neg-
ligible with the power densities used for orders p = 2
or 3;

– the diffraction phase-shifts [34] behave like q2τ and
may be rather large during the diffractions of orders
p = 2 or 3. A large phase shift does not induce a loss of
fringe visibility if it is the same for all the atoms. The
dependence of the phase shift with time (due to the
intensity fluctuations of the laser), with space (due to
the intensity profile of the laser beams) and with the
atom velocity may result in a large reduction of the
fringe visibility.

We think that decoherence by collision with the resid-
ual gas is negligible in our case. This decoherence effect,
which has been studied in a Talbot-Lau interferometer
with fullerenes [45–47], could be observed in our case if a
lithium atom can be detected with a large probability even
after a collision with an atom of the residual gas. Obvi-
ously, this is not the case. The residual gas creates an index
of refraction proportional to its density and the transmit-
ted waves are attenuated and phase shifted [22,23]. The
fluctuations of these phase shifts could induce a phase
noise and a reduction of the fringe visibility, but this effect
is negligible in our experiment. Moreover, this decoher-
ence effect has no strong dependence with the diffraction
order p.

By moving the detector slit, we have successively
recorded the interference signals on the two outputs
beams, B1 and B2, and we have verified that a destructive
interference at B1 corresponds to a constructive interfer-
ence at B2. The observed visibility at B2 is slightly less
good than at B1: the simplest explanation, which would
be that the two interfering beams have not equal ampli-
tudes, is not convincing (see Eq. (7) and Fig. 2). We think
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that the visibility difference is most probably due to the
stray beams represented in Figure 1.

We have also been able to observe signals due to the
6Li isotope present in the lithium beam with its natural
abundance (7.5%). This was done by changing the laser
frequency so that the diffraction was isotopically selective
in favor of 6Li: for this experiment, we used a laser fre-
quency with a detuning of δ/(2π) ≈ −24 GHz, so that the
laser is at 4 GHz on the red side of the 2S1/2−2P1/2 tran-
sition of the 6Li isotope and at 14 GHz on the red side of
the nearest transition of the 7Li isotope, which is also the
2S1/2−2P1/2 transition. We thus observe a mean intensity
I0 = 4240 s−1 and a visibility V = 55%. Considering the
7.5% natural abundance of 6Li, the observed mean inten-
sity is too high to be purely 6Li; we think that a noticeable
contribution comes from the 7Li content of various stray
beams (with the detuning used, the probability of diffrac-
tion of 7Li atoms by one of the three laser standing waves
is small but not fully negligible). As these stray beams
carry no interference effect, their contribution to the sig-
nal could explain a too large value of the mean intensity
and, at the same time, a visibility which is smaller than
what we observe with when we work with 7Li.

5 Optimization of the fringe visibility

We have explored how the defects modify the fringe visi-
bility in a systematic way. These effects can be analyzed
theoretically [40,48] and we will compare the results of
this analysis with our experimental results.

5.1 Sensitivity of the visibility to the orientations
of the standing wave mirrors

We have not made any systematic study of the effect of
the rotations around the y-axis: these rotations modify the
angle of incidence of the atomic wave on the laser standing
wave. When this angle differs sufficiently from the Bragg
angle, the diffraction amplitude is reduced. The output
signal and the fringe visibility should also be reduced, but,
following equation (7), the associated visibility reduction
is expected to be very slow. On the contrary, the rotation
around the z-axis has a very large effect, as explained by
the simple plane wave theory recalled in Section 2.1. The
two waves, which interfere on the detector, present a wave
vector difference equal to:

∆k = p (2kG2 − kG1 − kG3) .

The signal comes from the integration over the detector
surface of the local intensity. If we assume that a flat inten-
sity profile over a region −hD/2 < y < hD/2 and zero in-
tensity elsewhere, we calculate a visibility given by:

V = V0 | sinc (∆kyhD)| (12)

where V0 stands for the visibility achieved when ∆k = 0,
∆ky is the y component of ∆k and sinc(x) is a short-hand
notation for sin(x)/x.

Part b

Fig. 5. Fringe visibility measured as a function of the angle θz

measuring rotation around the z-axis of mirror M2. The exper-
iment has been done with the diffraction orders p = 1 (part a)
and p = 2 (part b). The points are experimental and the curves
are the best fits using equation (12). The agreement is excel-
lent in the central region, where the visibility decreases twice as
fast as when using p = 2 than when using p = 1, in agreement
with equation (12).

We have tilted mirror M2 around the z-axis, by apply-
ing a voltage on the corresponding piezo-drive and we have
recorded fringes and measured their visibility. We have
converted the voltage applied on the piezo-drive into a ro-
tation angle, using an external calibration and neglecting
the piezo hysteresis. The measured visibility has been plot-
ted as a function of the angle θz(M2) in Figure 5. The visi-
bility decreases rapidly, as expected, but it does not vanish
where predicted by equation (12). We think that this is
a kind of apodization effect: the predicted cancellations
disappear if a smooth weight function of y replaces the 0
or 1 intensity function used to establish equation (12).
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Fig. 6. Fringe visibility as a function of the mismatch between
the distances between consecutive gratings ∆L = L23 −L12 =
z − zc for first (triangles) and second (squares) diffraction or-
ders. The points are experimental and the curve is the best fit
using our approximate formula (Eq. (13)), for a collimation slit
width e1 = 14 µm. The fitted parameter are the maximum vis-
ibility V0(p) for each order p and the position zc corresponding
to a vanishing distance mismatch.

Pritchard and co-workers have made a study very similar
to the present one in [35].

5.2 Fringe visibility as a function of the mismatch
between the distances between consecutive gratings

If the distances between consecutive gratings L12 and L23

are different, the symmetry of the Mach-Zehnder inter-
ferometer is broken and the visibility is reduced. This ef-
fect was studied by numerical simulation by Turchette and
coworkers [48]. We have shown [40] that, if the diffraction
due to the slit S1 is negligible, the visibility is given by:

V = V0

∣∣
∣
∣ sinc

(
pkGe0∆L

2L04

)
sinc

(
pkGeD∆L

2L04

)∣∣
∣
∣ (13)

where ∆L = L23 − L12 (this formula was written in [40]
for the diffraction order p = 1 only).

To study this effect, we have moved the last mirror en-
countered by the laser beam on its way to the mirror M1

where it reflects and forms the first laser standing wave.
This motion was done with a translation stage, so that the
laser beam direction is conserved. For various positions z
of this translation stage, we have recorded atom interfer-
ence signals and measured their fringe visibility V . The
measurements have been fitted by equation (13), in which
we have replaced ∆L = z−zc, where zc corresponds to the
position which cancels the mismatch ∆L. The data points
and their fit are plotted in Figure 6 and the agreement
is very good. We cannot explore a larger range of z val-
ues because of the limited window diameter. By a direct

Fig. 7. Fringe visibility V in % (dots), and mean signal in-
tensity I0 in 103 counts/s (squares) as a function of the de-
tector slit width eD in µm while the collimation slit width is
e1 = 12 µm. The lines are simply drawn to guide the eye.

measurement on our machine, we have verified that the
value of zc = 3.5 mm deduced from the fit corresponds
well, with an uncertainty of ±0.5 mm, to the equality of
the two distances L12 and L23.

5.3 Signal and fringe visibility as a function of slit
widths

The widths of the collimation and detector slit can be
adjusted by piezo actuators and they open symmetri-
cally. We have varied these two slit widths and we have
recorded the interference signals on which we have mea-
sured the fringe visibility V and the mean intensity I0.
These two quantities are plotted as a function of the de-
tector slit width eD in Figure 7 and as a function of the col-
limation slit width e1 in Figure 8. This study is very useful
to optimize the phase sensitivity of the interferometer.

If we consider first Figure 7 representing the effects of
the detector slit width eD, the signal intensity I0 increases
linearly with eD up to eD ≈ 40 µm while the visibility V is
roughly constant as long as eD < 60 µm: this first regime
is what is expected when the detector slit collects only the
signal corresponding to beam B1. Then for larger eD val-
ues, the intensity I0 increases more slowly and the visi-
bility V decreases rapidly. Now, the detector slit is suffi-
ciently opened to collect all the B1 beam and a part of the
B2 beam. If the interferometer was perfectly symmetrical,
the B2 beam would carry the same flux as B1 beam with
a complementary interference signal. The fact that the in-
tensity increases with a slope reduced roughly by a factor 2
is in agreement with the fact that the slit opens symmet-
rically and only one side of the slit is useful to transmit
the B2 beam and the rapid decrease of the visibility is in
good agreement with the fact that the two beams Bi carry
complementary interference signals.
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Fig. 8. Fringe visibility V in % (dots) and mean signal in-
tensity I0 in 103 counts/s (squares) as a function of the col-
limation slit width e1 in µm while the detection slit width is
eD = 43 µm. The lines are simply drawn to guide the eye.

When the collimation slit width e1 is varied, the effects
are slightly more complex. In particular, one should not
forget that Bragg diffraction has a strong angular selec-
tivity: this selectivity makes that when the slit is widely
opened, it admits in the interferometer atoms which have
not the Bragg incidence and therefore these atoms have a
low diffraction probability. These atoms will contribute to
make the direct stray beam (the beam which is diffracted
three times in the zeroth order) more intense. As long as
the collimation slit width e1 is below 25 µm, the inten-
sity I0 increases with the slit width while the contrast is
mostly constant. When 35 < e1 < 70 µm, the intensity
increases more rapidly, as a consequence of the broaden-
ing of the wings of the direct beam. As the direct beam
carries no interference signal, the visibility decreases while
the product I0V remains roughly constant. Finally, when
e1 > 70 µm, the intensity saturates because the direct
stray beam fully covers the detection slit and the visibil-
ity remains constant.

5.4 Fringe visibility as a function of an applied
magnetic field gradient

An atomic Mach-Zehnder interferometer operating with
paramagnetic atoms like lithium remains insensitive to
a weak homogeneous magnetic field but the output sig-
nal is very sensitive to a magnetic field gradient, as ex-
plained below. This effect was studied by Pritchard and
co-workers [35,51] and also by Giltner in his thesis [52].

In our experiment, the Earth magnetic field is not com-
pensated. Moreover, the vacuum pipes are supported by a
very heavy structure made of steel rails, but we have made
efforts to use very few magnetic parts inside the interfer-
ometer vacuum chamber, the only exception being small
steel springs in the kinematic mounts of the three mirrors.

The field along the atomic paths has been measured, it is
very roughly homogeneous, reminiscent of the Earth field
(of the order of 4 × 10−5 T) and an important point is
that it never vanishes.

We assume that the field is weak, below 10−3 T, so
that the hyperfine structure remains coupled: the eigen-
states are the |F, MF 〉 sublevels and it is a good approxi-
mation to consider only first order Zeeman effect. As the
field never vanishes, the adiabatic theorem can be applied
and the projection MF of the angular momentum remains
constant on a quantization axis which follows the local di-
rection of the field. The magnetic phases φ(F, MF ) are
given by:

φ(MF ) =
gF µBMF

�v

∫
B(s)ds (14)

where gF is the hyperfine Landé factor, B is the modulus
of the magnetic field and the integral is carried along the
atomic path. Neglecting the nuclear spin contribution to
the atomic magnetic moment, for lithium 7Li, the nuclear
spin is I = 3/2 and the hyperfine levels with F = 1 and 2
have opposite Landé factors equal to gF = −1/2 for the
F = 1 and gF = +1/2 for the F = 2.

The magnetic phases are quite large, φ(MF )/MF =
2 × 103 rad for a field B = 4 × 10−5 T. Fortunately,
these phases play no role in the absence of non-adiabatic
transitions from one sublevel to another one. The interfer-
ometer signal is only sensitive to the phase difference for
each sublevel between the two atomic paths. In the pres-
ence of a gradient of the magnetic field modulus B in the
x-direction, the interference pattern corresponding to the
MF level suffers a phase shift ∆φ(F, MF ) = ϕMF with ϕ
given by:

ϕ =
gF µB

�v

∫
dB(s)

dx
∆x(s)ds (15)

where ∆x(s) is the distance between the two atomic paths.
Let us consider a magnetic dipole µ parallel to the x-axis,
located at a distance d from the atomic paths. We can
get a closed form expression of ϕ if we neglect the homo-
geneous background field and if we assume that ∆x(s) is
almost constant over the region where the gradient of B
is large, we get:

∫
dB(s)

dx
ds =

µ0µ

2πd3

∫ π/2

−π/2

[
3 cos2 θ + 1

]1/2
cos θdθ (16)

where the integral over θ is equal to 3.42. One must not
forget that the approximations made are not very good.
With 7Li hyperfine level structure, in the absence of op-
tical pumping, i.e. assuming the same population for the
8 sublevels, the interference visibility varies with ϕ in the
following way:

V = V0
2 + 4 cosϕ + 2 cos 2ϕ

8
. (17)

With our approximations, ϕ is a linear function of the
dipole moment or of the current if we use a coil. Moreover
ϕ is proportional to v−2, where v is the atom velocity:
a v−1 factor is obvious in equation (15) and the other
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Fig. 9. Fringe visibility V as a function of the electric current I
in the coil which creates a magnetic gradient over the atomic
paths. The points are experimental while the full curve is the
best fit using equations (17) and (19) with α/u = 0.111, a value
rather close but lower than the one measured on our incident
lithium beam α/u = 0.133, showing the selectivity of the Bragg
diffraction process. The dashed curve is the curve predicted if
the velocity was perfectly defined and equal to u (i.e. if α = 0).

factor is hidden in the quantity ∆x(s) proportional to the
diffraction angle.

The velocity distribution of the lithium atoms induces
a dispersion on ϕ which further induces a fringe visibil-
ity reduction. Assuming a Gaussian velocity distribution
profile P (v)dv ∝ exp[−(v − u)2/α2], we deduce a phase
distribution:

P (ϕ)dϕ ∝ exp
[
− (ϕ − ϕm)2 /β2

]
(18)

with the phase ϕm corresponding to the velocity u and
β = 2ϕmα/u. This approximate formula is valid in the
limit α � u. After averaging over ϕ, the visibility V is
then still given by equation (17), where cos(kϕ) (k is an
integer) is replaced by its average 〈cos(kϕ)〉 over the dis-
tribution P (ϕ) simply given by:

〈cos(kϕ)〉 = cos(kϕm) exp
[−k2β2/4

]
. (19)

We have done a first experiment with a coil outside the
vacuum tank. The coil, with 350 turns and a mean turn
area close to 50 cm2, is located at about 20 cm from the
atomic paths. We have recorded interference fringes for
different currents I, varying from 0 to 8 A by 0.1 A steps.
We have measured the fringe visibility V , which is plot-
ted as a function of the current I in Figure 9. Because of
the dispersion on ϕ due to the velocity distribution of the
lithium atoms, the visibility observed at the peak of the
revival is not as large as when ϕ = 0. As a consequence,
the variation of the visibility with the applied field gradi-
ent contains an information on the velocity dispersion of
the atoms contributing to the atomic interference signal.

As Bragg diffraction is velocity selective, this velocity dis-
tribution may differ from the velocity distribution of the
lithium beam measured at the entrance of the interfer-
ometer [37,38]. The present arrangement with a large coil
rather far from the atomic path is not very favorable for
a precise analysis, because the applied field is perturbed
by the magnetic parts of the set-up, but with an improved
arrangement, we hope to measure accurately the velocity
distribution of the atoms contributing to the interference
signal.

Recently, we have used a small coil under vacuum
(3.5 turns of wire on a 3 cm diameter ring, with the coil
center at a distance d = 7.5 mm from the atomic paths).
In a first time, we have studied with care the region of
near zero field gradient and we have observed an improved
fringe visibility for a small current in the coil, thus proving
that a small but non negligible magnetic field gradient is
present in our apparatus. In such an experiment, we do not
cancel everywhere the magnetic field gradient but we sim-
ply cancel the integral appearing in equation (15). In this
experiment, the best observed visibility is V = 84.5±1.0%
for the diffraction order p = 1 and V = 54.0 ± 1.0% for
the diffraction order p = 2 and these results are presented
in Figure 4.

The effect of an electric field gradient exists also and
it has been used recently [21] for the compensation of
phase dispersion in an atom interferometer. The Stark
effect is quadratic in electric field and, in a 2S1/2 state,
it is, with an excellent approximation, independent of the
F, MF sublevel as a consequence of the Wigner-Eckart the-
orem. The induced phase is the same for all the F, MF lev-
els and this phase will play a role only if it is large, because
of its dispersion with the atom velocity. A large phase will
exist only if the electric field and its gradient are both large
enough. The stray electric field normally encountered in-
side vacuum chambers are usually weak, below 1 V/cm,
and we do not expect a large gradient, especially close to
the metallic rail supporting the mirrors. The resulting loss
of coherence due to the stray electric field should be fully
negligible.

6 Conclusion

In this paper, we have described our Mach-Zehnder atom
interferometer operating with a thermal lithium beam and
we have shown some examples of the observed signals. We
have briefly recalled the main theoretical points, as they
are very important to choose the best parameters. We
have then given a description of this interferometer and its
operation: vacuum system, laser system and laser standing
waves, alignment procedures, the other parts being the
subjects of separate publications.

In our interferometer like in the metastable neon in-
terferometer of Siu Au Lee and coworkers [12], the mir-
rors and beam-splitters for the atomic waves are based on
elastic diffraction by laser standing waves, in the Bragg
regime. This choice provides an almost ideal interferom-
eter and, in agreement with the theory of such interfer-
ometers, we have measured a high transmission and an
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excellent visibility, V = 84.5 ± 1.0%, when using first or-
der diffraction: this is the best visibility ever achieved with
a thermal atom interferometer with spatially separated
atomic paths. This observation proves that the atom prop-
agation is almost perfectly coherent in the interferometer:
the two atomic paths are separated by 100 µm, in the
vicinity of the second laser standing wave and this dis-
tance is close to 2 × 106 de Broglie wavelengths!

We have also operated our interferometer with the
diffraction orders p = 2 and 3. The fringe visibility di-
minishes rapidly with the diffraction order p and we are
presently investigating the origins of this rapid diminu-
tion. We have also tested the effect of the main misalign-
ments on the fringe visibility, with results in excellent
agreement with theory. We have studied the signal inten-
sity and the fringe visibility as a function of the width of
the collimation and detector slits.

This study will serve to optimize the operating con-
ditions and to reach the best phase sensitivity, which is
a very important point for the accurate measurement of
perturbations. We have achieved a phase sensitivity close
to 25 mrad/

√
Hz which is better than the 34 mrad/

√
Hz

obtained in our previous study [1] (an error was made in
this paper and we gave a value which was too small by a
factor 2). With minor improvements, we hope to measure
phase shifts with an accuracy close to 1 mrad in a few
minutes of experiment.

Finally, following previous experiments, we have ap-
plied a magnetic field gradient: when the gradient in-
creases, the fringe visibility first decreases and vanishes,
before presenting a revival for a larger gradient. The inten-
sity of the visibility revival is a sensitive tool to measure
the velocity spread of the atoms contributing to the inter-
ferometer signal.

We are going to proceed now to interferometric mea-
surements: our first goals are the measurements of the
electric polarizability of lithium atom and of the index of
refraction of permanent gases for lithium waves. The pos-
sibility of using several diffractions orders may reveal very
interesting in this case, as the path separation is propor-
tional to the diffraction order.

We are very much indebted toward R. Delhuille, who was the
first to operate successfully this atom interferometer in 2001.
We also thank C. Champenois, L. Jozefowski for their impor-
tant contributions to the early phase of this work, and L. Lazar,
for her participation to the magnetic rephasing experiment.
Special thanks to F. Biraben and F. Nez for their loan of ma-
terial, to D. Pritchard and Siu Au Lee for various information
concerning their experiments. We thank CNRS SPM, Région
Midi-Pyrénées, université Paul Sabatier and IRSAMC for fi-
nancial support.
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Phys. Rev. Lett. 67, 177 (1991)

5. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)
6. Atom interferometry, edited by P.R. Berman (Academic

Press, 1997)
7. U. Sterr, K. Sengstock, J.H. Müller, D. Bettermann, W.

Ertmer, Appl. Phys. B 54, 341 (1992)
8. A. Morinaga, T. Tako, N. Ito, Phys. Rev. A 48, 1364 (1993)
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